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A spatially developing supersonic boundary layer at Mach 2 is analysed by means
of direct numerical simulation of the compressible Navier–Stokes equations, with the
objective of quantitatively characterizing the coherent vortical structures. The study
shows structural similarities with the incompressible case. In particular, the inner
layer is mainly populated by quasi-streamwise vortices, while in the outer layer we
observe a large variety of structures, including hairpin vortices and hairpin packets.
The characteristic properties of the educed structures are found to be nearly uniform
throughout the outer layer, and to be weakly affected by the local vortex orientation.
In the outer layer, typical core radii vary in the range of 5–6 dissipative length scales,
and the associated circulation is approximately constant, and of the order of 180 wall
units. The statistical properties of the vortical structures in the outer layer are similar
to those of an ensemble of non-interacting closed-loop vortices with a nearly planar
head inclined at an angle of approximately 20◦ with respect to the wall, and with an
overall size of approximately 30 dissipative length scales.

1. Introduction
The importance of coherent eddy structures in turbulent wall-bounded flows has

been recognized since the pioneering work of Theodorsen (1952), who proposed that
incompressible turbulent boundary layers are populated by hairpin-like structures
attached to the wall. These structures are responsible for transport of low-momentum
fluid and for Reynolds-stress production, and are the main cause of ejections and
sweeps. Townsend (1976) first observed that the turbulent motion in the constant-
stress (logarithmic) region of the boundary layer can be explained by considering
the existence of organized flow patterns that extend to the wall. These structures are
self-similar and their characteristic scales vary with the wall distance, and in this
respect they are ‘attached’ to the wall. Townsend’s attached-eddy model was later
exploited for quantitative predictions on the structure of the logarithmic layer by
Perry & Chong (1982), who assumed that the wall layer is populated by randomly
distributed hairpin-like vortices.

Early experimental works (Kim, Kline & Reynolds 1971; Kline et al. 1967; Head &
Bandyopadhyay 1981) provided substantial support to the attached-eddy concept and
showed the existence of low- and high-speed streaks in the inner part of the boundary
layer, having a characteristic spacing of about 100 wall units in the spanwise direction
and extending for approximately 1000 wall units in the streamwise direction. The
numerical and experimental data reviewed by Robinson (1991a) provided evidence
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for the existence of elongated vortices leaning in the forward streamwise direction at
an angle that increases with distance from the wall.

The emergence of direct numerical simulations (DNS) and of more advanced
experimental techniques have recently contributed to better elucidate the responsible
mechanisms for the generation and interaction of the different vortical structures in
wall-bounded turbulent flows. By using the DNS database of Spalart (1988), Chong
et al. (1998) have characterized the topological properties of wall-bounded flows, and
have confirmed the occurrence of Theodorsen’s hairpin-like vortices, as well as the
existence of vortex tubes nearly aligned with the streamwise direction. According to
the mechanism proposed by Hamilton, Kim & Waleffe (1995), and supported by the
numerical experiments of Jiménez & Pinelli (1999), near-wall turbulence is sustained
by a closed-loop mechanism, whereby streaks are formed owing to advection of
the mean velocity field by quasi-streamwise vortices (whose characteristic length is
O(100) wall units), which are in turn generated by streak instability. A fraction of
the quasi-streamwise vortices coalesce owing to sustained stretching by mean shear,
forming hairpin vortices that grow while moving downstream and become the most
frequently observed structures in the outer part of the boundary layer (Hutchins,
Hambleton & Marušić 2005; Ganapathisubramani, Longmire & Marušić 2006). An
alternative mechanism for the sustainment of near-wall turbulence has been proposed
by Chernyshenko & Baig (2005), whereby streaks are first formed owing to the
pattern-forming properties of the combined action of wall-normal motions, mean
shear and viscous diffusion.

In order to explain the apparent disparities in the observed length scales of the
streaks and of the quasi-streamwise vortices, Adrian, Meinhart & Tomkins (2000)
have provided evidence of the existence of vortex packets, which consist of several
streamwise vortices and hairpins associated with the same streak. The numerical
simulations of the evolution of an isolated hairpin vortex carried out by Zhou
et al. (1999) have confirmed that trains of secondary hairpin vortices are generated,
provided the strength of the parent structure exceeds a suitable threshold. Such a
scenario is consistent with the experimental observations of Head & Bandyopadhyay
(1981) and the more recent results of Ganapathisubramani et al. (2006). Del Álamo
et al. (2006) have studied the organization of vortex clusters in the outer layer of a
turbulent channel by means of DNS, and found that the population of vortices in
the logarithmic layer naturally breaks into two families. The first one includes wall-
detached vortices, which are distributed almost uniformly throughout the outer layer.
The typical size of the wall-detached vortices is of the order of the Kolmogorov length
scale (η), and it does not depend upon the distance from the wall. In particular, Del
Álamo et al. (2006) found that the overall size of detached vortex clusters is Δ � 20 η,
and their core size is 4 � r0/η � 6. The second family consists of Townsend’s wall-
attached eddies, which grow self-similarly in time and closely resemble the large arrays
of hairpins observed by Adrian et al. (2000), being responsible for the establishment
of the mean shearing field. The number density of clusters of the second family is
smaller than that associated with the first family; nevertheless, they are dynamically
more relevant, their size being larger and their contribution to the production of the
Reynolds stress more significant.

The geometric features (size and orientation) of coherent vortices in low-speed
wall turbulence were first investigated by Blackwelder & Eckelmann (1979), who
experimentally detected counter-rotating vortex pairs by means of conditional
analysis. Those authors found the expected vortex centre at y+ ≈ 15 (in wall
units), expected radius r+

0 ≈ 15, streamwise extent of 200+ and spanwise spacing of
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50+ –200+. Robinson (1991b) computed probability distributions of radii, circulations
and wall distances for quasi-streamwise vortices based on the DNS database of
Spalart (1988). His results showed that the number density of vortices peaks at
about y+ ≈ 10–50, the most probable radius is in the range r+

0 ≈ 5–20, and the
typical non-dimensional circulation is Γ + (= Γ/ν) ≈ 60–250. Carlier & Stanislas
(2005) have carried out an experimental investigation whereby eddy structures are
detected by means of a pattern-recognition algorithm and vortex parameters are
determined by fitting the vortex cores with an Oseen model. Their results showed
that in the range of Reynolds numbers investigated (7500 � Reθ � 19 000), the eddy
structures are organized as cane-shaped vortices tilted downstream at an angle close
to 45◦. The eddies have an apparent origin at y+ ≈ 25 and their size (r+

0 ≈ 18–25)
increases with both the Reynolds number and the distance from the wall, while
the circulation is approximately constant (Γ + ≈ 235–250, M. Stanislas 2007, personal
communication).

Ganapathisubramani et al. (2006) have performed dual-plane particle-image
velocimetry (PIV) experiments of a low-speed turbulent boundary layer at Reτ = 1160
and studied the geometric orientation of vortex cores both in the logarithmic region
(at y+ = 110) and in the wake region (at y/δ = 0.53). Their study reveals the occurrence
of forward leaning vortex cores whose number density decreases with the wall-normal
distance, and whose most probable elevation (the angle formed by the vortex with the
wall plane) is 38◦ in the log layer and 33◦ in the wake region. Furthermore, the most
probable eddy inclination angle (the angle made in the streamwise-wall-normal plane)
is found to be approximately equal to 45◦ in both regions. Consistent with kinematic
models based on the attached-eddy hypothesis (Perry & Marušić 1995; Marušić &
Perry 1995), the study also indicates the presence of inward-leaning vortex cores and
spanwise oriented cores.

While the structural features of low-speed boundary layers seem to be well
understood, much less is known to date about the behaviour of their high-speed
counterparts. In particular, the knowledge of the inner-layer dynamics of compressible
boundary layers is limited to qualitative analysis of DNS data. As first suggested
by Morkovin (1961), it is generally acknowledged that for supersonic flows with
moderate Mach number, the direct effects of compressibility on wall turbulence at
zero pressure gradient are small, the most notable differences being due to variations
of the thermodynamic properties across the layer. All available experimental data (see
Smits & Dussauge 2006 and references therein) confirm that supersonic boundary
layers at zero pressure gradient exhibit close similarities with incompressible ones,
and that the main turbulence statistics can be correctly predicted as variable-density
extensions of incompressible results. Direct numerical simulations of zero-pressure-
gradient supersonic boundary-layer flows have been very limited so far. Recent
studies include the ‘extended temporal’ simulation of Maeder, Adams & Kleiser
(2001), the quasi-periodic simulation of Guarini et al. (2000), and the fully spatial
DNS of Pirozzoli, Grasso & Gatski (2004). These studies have further confirmed that
a modified form of the wall law holds for the Van Driest-transformed mean velocity
profile, and that the distribution of the density-scaled Reynolds stresses closely follows
the universal distribution found in the incompressible case.

With regard to the dynamics of coherent structures of supersonic boundary layers,
experimental results are scarce, mainly because of difficulties in resolving the very
small vortices found at the high Reynolds numbers typical of supersonic experimental
arrangements, and knowledge is mainly limited to the large-scale motions in the
outer layer. Most of the available supersonic experimental data reviewed by Spina,
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Smits & Robinson (1994) indicate little influence of compressibility on the large-scale
turbulent boundary-layer motions and on the characteristic time scales, convection
velocities and vortex angles. Robinson (1989) performed dual hot-wire measurements
in a supersonic boundary layer at M = 2.97, Reθ = 15 000, and analysed one- and
two-point correlations to characterize coherent motions. The author concluded that
large-scale structures are present throughout the boundary layer, whose slope with
respect to the wall ranges from 5◦ at y+ = 29 to 30◦ at y/δ = 0.6. Spina & Smits (1987)
and Spina, Donovan & Smits (1991) analysed the two-point space–time correlations
in the outer part (y+ > 650) of a canonical supersonic boundary layer at M = 2.9,
Reθ =81 000. Those studies confirmed the existence of outer-layer structures similar
to the turbulent bulges observed in the incompressible boundary layer, whose size
is of O(δ), and whose inclination with respect to the wall varies from 45◦ to 60◦.
Furthermore, their convection velocity is nearly constant and equal to 90 % of the
free-stream velocity.

The structural features of supersonic wall turbulence were investigated in the
studies of Maeder et al. (2001) (at M = 3, 4.5, 6, Reθ ≈ 3000) and Pirozzoli et al.
(2004) (at M = 2.25, Reθ =4263). In particular, the latter paper revealed the
occurrence of organized motions in the outer layer (turbulent bulges) separated
from the surrounding essentially irrotational fluid by sharp interfaces having a three-
dimensional character, and of elongated streaky structures of alternating high- and
low-speed fluid in the very near-wall region. Martin (2004) observed a consistent
decrease of both the streamwise extent and the spanwise spacing of streaks (in terms
of wall units) for M > 3. Ringuette, Wu & Martin (2008) have performed a DNS
of a supersonic boundary layer (at M = 3, Reθ ≈ 2500), and found the same type of
coherent structures as in subsonic and supersonic experiments, i.e. elongated streaks in
the log region, and hairpin vortex packets, frequently located above low-momentum
streaks. No quantitative information related to the geometric properties (size and
orientation) of vortical structures in supersonic boundary layers is presently available
in the literature.

The main objective of the present study is to quantitatively characterize the
statistical features (orientation, size and circulation) of coherent vortical structures
of compressible wall-bounded flows by means of a highly resolved direct numerical
simulation of a supersonic turbulent boundary layer at M = 2, Reθ = 949 (based on
the inlet conditions). In addition, we also aim at formulating a model for the most
representative (in a statistical sense) outer-layer structures. The paper is organized
as follows. The numerical methodology is described in § 2; in § 3, the techniques
developed for educing the coherent structures are illustrated; the main results of the
study are presented in § 4, which includes a quantitative statistical analysis of the
geometrical features of boundary-layer vortices in terms of population, orientation,
size and topological properties of the educed structures. Concluding remarks are given
in § 5.

2. Computational strategy
In the present work we solve the full three-dimensional unsteady Navier–Stokes

equations for a perfect gas cast in conservation form

∂U
∂t

+

3∑
j=1

∂ Fj

∂xj

=

3∑
j=1

∂Gj

∂xj

, (2.1)
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where

U =

⎧⎨⎩ ρ

ρui

ρE

⎫⎬⎭ (i = 1, 2, 3),

is the vector of the conservative variables and

Fj =

⎧⎨⎩ ρuj

ρuiuj + pδij

ρEuj + puj

⎫⎬⎭ , Gj =

⎧⎪⎨⎪⎩
0
σij

σijui + k
∂T

∂xj

⎫⎪⎬⎪⎭ (i = 1, 2, 3),

are the Eulerian and viscous fluxes in the j th coordinate direction, respectively; ρ

is the density, ui is the velocity component in the ith coordinate direction, p is the
thermodynamic pressure, and

σij = 2 μSij − 2
3
μ Skk δij ,

is the viscous stress tensor, and Sij = (ui,j +uj,i)/2. The molecular viscosity is assumed
to obey Sutherland’s law, and the thermal conductivity is related to μ through the
relation k = cp μ/Pr (the molecular Prandtl number is assumed to be 0.72).

The computational strategy to solve the governing equations relies on a finite-
difference approach that has been extensively validated in previous works both for
isotropic decaying compressible turbulence and for wall-bounded turbulent supersonic
flows (Pirozzoli & Grasso 2004, 2006). In particular, the Eulerian fluxes are discretized
by means of a linear seventh-order central upstream approximation with local Lax–
Friedrichs flux splitting, the viscous fluxes are approximated using a fourth-order
compact-difference scheme, and time integration is performed by means of a classical
four-stage fourth-order explicit Runge–Kutta algorithm.

The selected computational domain has an overall size Lx × Ly × Lz = 25δ0 ×
3δ0 × 3.7δ0 where x, y and z stand, respectively, for the streamwise, wall normal
and spanwise directions, and δ0 is the boundary-layer thickness at the inlet section
(x = 0). The domain is discretized with a grid consisting of 1809 × 180 × 225 points
that are uniformly distributed in the streamwise and spanwise directions. The mesh
is stretched in the wall-normal direction (with 30 points in the buffer region up
to y+ =30) according to a hyperbolic sine mapping function up to the boundary-
layer edge, and according to a geometric progression up to the upper boundary of the
computational box. In terms of wall units, the streamwise and spanwise mesh spacings
are �x+ =�z+ = 4.5; the spacing in the wall normal direction varies from �y+ = 0.95
(at the wall) to �y+ = 4.1 (at the boundary-layer edge). Wall units are defined in
terms of the friction velocity and of the viscous length scale evaluated at the wall
(uτ =

√
τw/ρw , δv = νw/uτ ). Scaling with ‘local’ viscous units, while being dimensionally

sound, does not lead to a compressible analogue of the wall law (Smits & Dussauge
2006).

The enforcement of initial and inlet boundary conditions is based on the approach
developed by Sandham, Yao & Lawal (2003), and subsequently extended by Li &
Coleman (2003) to supersonic flows. The basic idea is to consider a mean turbulent
boundary-layer profile with superposed fluctuations that mimic the organized motions
of the inner and outer part of the boundary layer (lifted streaks and large eddies,
respectively). The approach has been extensively tested in the literature, and shown to
yield faster transition to a fully developed turbulent state compared to conventional
approaches (e.g. forcing through blowing and suction, recycling techniques, etc.).
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x/δ0 Me Reδ Reθ Reτ Cf H (δ∗/θ ) Tw/Te μw/μe

0 2.0 13500 949 278 3.54 × 10−3 3.19 1.717 1.568
15 2.0 14500 1180 270 3.22 × 10−3 3.61 1.717 1.568
25 2.0 17400 1350 358 3.05 × 10−3 3.62 1.717 1.568

Table 1. Boundary-layer properties at several streamwise stations (inlet section, beginning and
end of fully developed turbulence). Subscripts: e indicates properties outside the boundary
layer, w indicates wall properties. Reδ = ρeueδ/μe , Reθ = ρeueθ/μe , Reτ = ρwuτ δ/μw = 1/δv .

The mean Van Driest transformed velocity distribution has been prescribed
according to (Guarini et al. 2000)

u+
vd =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

κ
log (1 + κy+) + C1

(
1 − e−y+/η1 − y+

η1

e−by+

)
+

1

κ

[(y

δ

)2

−
(y

δ

)3

+ 6Π
(y

δ

)2

− 4Π
(y

δ

)3
]

(y < δ),

u∞vd/uτ (y � δ),

(2.2)

where uvd incorporates the effect of variable density in the boundary layer (Smits &
Dussauge 2006)

uvd =

∫ u

0

(
ρ

ρw

)1/2

du, (2.3)

and κ = 0.41, C = 5.1, Π = 0.20, C1 = C − log κ/κ , η1 = 11, b = 0.33. Pressure has been
assumed to be initially uniform, and the temperature distribution has been initialized
using the Crocco–Busemann integral (White 1974). The characteristic parameters of
the inlet boundary layer (x/δ0 = 0) are reported in table 1, where we also report the
values computed from DNS at two downstream locations (x/δ0 = 15 and 25).

The velocity disturbances at the inlet are determined according to (Li & Coleman
2003)

u′(x, y, z, t) =
√

ρw/ρ(y) u∞

5∑
j=1

aj Uj (y) sin
[
ωj

(
x/ucj

− t
)]

cos(2π z/λzj + φj ),

v′(x, y, z, t) =
√

ρw/ρ(y) u∞

5∑
j=1

bj Vj (y) sin
[
ωj

(
x/ucj

− t
)]

cos(2π z/λzj + φj ),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(2.4)

where

Uj (y) = (y/ŷj ) e−y/ŷj , Vj (y) = (y/ŷj )
2 e−(y/ŷj )

2

.

The inner-layer disturbances (j = 1) correspond to streaks and associated streamwise
vortices propagating at a speed 10 uτ with maximum amplitude at y+ =12, spanwise
spacing λ+

z ≈ 128 and streamwise wavelength λ+
x ≈ 500. The outer-layer disturbances

(j = 2, . . . , 5) represent large vortical structures that scale in outer units and propagate
with a convection velocity 0.75 u∞. The amplitudes of the various modes (aj , bj ,
see table 2) have been selected so as to closely reproduce the distribution of
the Reynolds stress found in canonical fully developed boundary layers. In order
to break any remaining symmetries due to the deterministic specification of inlet
disturbances, divergence-free random velocity fluctuations with a maximum amplitude
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j ŷj aj bj ωj ucj λzj φj

1 12.0δv 1.33 −0.25 0.108uτ /δv 10uτ 128δv 0.0
2 0.298δ0 0.33 −0.07 0.839u∞/δ0 0.75u∞ Lz/2 0.1
3 0.447δ0 0.33 −0.07 0.419u∞/δ0 0.75u∞ Lz/4 0.2
4 0.596δ0 0.33 −0.07 0.210u∞/δ0 0.75u∞ Lz/6 0.3
5 0.447δ0 0.33 −0.07 0.336u∞/δ0 0.75u∞ Lz 0.4

Table 2. Parameters for synthetic inlet forcing of DNS (as from equation (2.4)).

u′
rms/u∞ = 4 % have been added within the boundary layer (Li & Coleman 2003).

Finally, the spanwise velocity component is determined assuming that the synthetic
velocity field is solenoidal.

Zero wall-normal gradient has been enforced for temperature and pressure, and
homogeneous Dirichlet boundary conditions for all velocity components have been
specified at the no-slip adiabatic wall. A buffer layer is used to drive the flow to a
uniform state towards the outlet boundary, where variables are extrapolated from the
interior. Non-reflecting boundary conditions are specified at the upper boundary so as
to minimize spurious reflections of disturbances back into the computational domain,
and periodic boundary conditions are used in the spanwise direction to exploit
homogeneity. The numerical algorithm and the adequacy of the computational mesh
have been extensively tested in preliminary grid-sensitivity studies. In particular, the
selected spanwise size of the domain is sufficient to accommodate approximately
eight streaks (L+

z ≈ 1024), and it guarantees that the two-point correlations of all flow
variables drop to zero sufficiently fast so as not to inhibit the turbulence dynamics.

At the selected flow conditions, a fully developed turbulent state is observed
starting from x/δ = 15, where both the skin friction and the shape factor attain values
in agreement with those reported by Smits & Dussauge (2006). The turbulent Mach

number is found to be small throughout the domain (Mt =
√

u′2/a � 0.27), thus
preventing the manifestation of genuine compressibility effects, such as the occurrence
of eddy shocklets (Pirozzoli & Grasso 2004).

3. Eduction of vortical structures
A fundamental issue in the analysis of coherent vortical structures is the definition

of what a vortex is meant to be. According to Robinson et al. (1989), ‘a vortex
exists when instantaneous streamlines mapped onto a plane normal to the vortex core
exhibit a roughly circular or spiral pattern, when viewed from a reference moving
with the centre of the vortex core’. In practice, the identification of a vortex is still
an issue (for a review of the subject, see Chakraborty, Balachandar & Adrian 2005).
In the present work, we have followed the topological definition originally proposed
by Chong, Perry & Cantwell (1990), and later applied to compressible isotropic
turbulence by Pirozzoli & Grasso (2004).

Let A be the velocity gradient tensor (A = ∇u), A∗ be its traceless part (A∗ =A −
1
3

∇ · u I), and Q∗ (= − 1
2
A∗

ijA
∗
ji ) and R∗ (= − 1

3
A∗

ijA
∗
jkA

∗
ki ) be the second and third

invariants (the first being identically zero) of A∗. A vortex is identified as a connected
region where A∗ has one real eigenvalue (λr ) and two complex conjugate ones
(λ±

c = λcr ±i λci), which amounts to requiring that the discriminant of the characteristic
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equation of A∗

Δ = Q∗3
+ 27

4
R∗2

, (3.1)

is positive. As pointed out by Zhou et al. (1999), the local motion at the locations
where Δ > 0 (corresponding to core centres) is made up of the superposition of a
straining motion of strength λr in the associated eigendirection (vr ), and a spiralling
motion with angular velocity λci in the plane defined by the vectors vcr , vci (where
v±

c = vcr±i vci are the eigendirections associated with λ±
c ). In the present study coherent

vortical structures are identified as those regions where the ‘swirling strength’ exceeds
a suitable threshold (λ2

c i � ε2; the selected value of the threshold is specified in the
discussion of the results).

Once the vortical structures are educed, properties such as orientation and size are
quantitatively determined. With regard to vortex core orientation, we have considered
four different criteria, based on: (i) local vorticity direction (ω-criterion); (ii) swirl
plane normal direction (vax -criterion, vax = vcr × vci); (iii) local strain direction (vr -
criterion); (iv) eigendirection associated with the minimum eigenvalue (eH

1 ) of the
pressure Hessian (p-criterion).

It is a simple matter to show that in a purely rotational motion (i.e. if A∗ is
antisymmetric), the first three criteria are equivalent. The p-criterion relies on the
assumption that vortex structures are tubular, and therefore pressure must attain a
minimum in a plane normal to the vortex axis, to which are associated the two largest
positive eigenvalues of the pressure Hessian. The eigendirection corresponding to the
remaining eigenvalue (eH

1 , which is the smallest in modulus, and which can be either
positive or negative) is therefore expected to be associated with the direction parallel
to the vortex axis. We observe that both the vr -criterion and the p-criterion do not
yield a unique local vortex orientation, being defined in terms of eigendirections. To
remove such ambiguity we select for the local vortex orientation the direction closer
to the local vorticity direction out of the possible two.

Preliminary assessment of the various criteria has shown potential failure in the
presence of intense mean shear. For example, for unidirectional uniform shear the
ω- and vax criteria favour directions normal to the shear plane, the vr -criterion
favours directions aligned with the shear direction, while the direction predicted by
the p-criterion lies in between. In order to alleviate such deficiency, the geometrical
properties of vortical structures are determined by subtracting out the mean shear,
as was also done by Robinson (1991b). We point out that, in principle, mean shear
and turbulent fluctuations cannot be decoupled. However, as will be shown in the
following, most of the educed structures are detached from the wall in the sense of
Townsend. According to the analysis of Del Álamo et al. (2006), detached eddies
play little part in the establishment of the mean shearing field, and consequently it is
reasonable to decouple them from the mean field.

Typical visualizations of vortex cores in the outer region of the boundary layer are
represented in figure 1, where we report vector fields with modulus λ2

c i and direction
corresponding to the various vortex orientation criteria. The figure indicates good
alignment of the vector fields with the local direction of the vortex tubes (constructed
as iso-surfaces of the swirling strength). While all criteria are nearly equivalent for
vortices placed sufficiently for away from the wall, some differences are observed for
vortices located very close to the wall.

A more detailed analysis has shown uncertainties when using the p-criterion. In
particular, such a criterion correctly identifies cores of strong vortices, whereas for
weak vortices and for points near the boundary of strong ones it exhibits a tendency
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Figure 1. Visualization of vortex cores in the boundary layer. Tubes represent isosurfaces of

λ2
c i = 5 u2

∞/δ2
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c iω̂; (b) λ2
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H
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to yield core direction in the plane of the core, rather than normal to it. For this
reason the p-criterion has not been considered in the quantitative analysis of vortex
orientations.

We point out that in the analysis that follows, all the statistical properties related
to vortex orientation and size are weighted by the swirling strength λ2

c i , in order to
give more importance to regions of intense vortical motion.

4. Results
In order to highlight the qualitative features of the flow field, in figure 2 we

report the contours of the streamwise velocity fluctuations in a plane parallel to
the wall (at y+ = 15), with superposed vortical structures visualized by means of the
swirling strength criterion. Many of the features reported by Robinson (1991a) for
incompressible boundary layers are also found in the present DNS study. The velocity
field in the viscous sublayer and in the buffer region is organized into alternating
elongated narrow streaks of high-speed and low-speed fluid (represented, respectively,
as light and grey shades), with a characteristic length of O(1000) wall units (such a
value being inferred from inspection of many data sets), which compares well with low-
speed boundary-layer data (Kline et al. 1967). Strong vortices (both quasi-streamwise
vortices and hairpins) are mainly associated with the low-speed streaks, and have a
characteristic length of O(100) wall units. The close relation between low-speed streaks
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Figure 2. Contours of u′′/u∞ in the buffer zone (y+ =15), with superposed iso-surfaces of
swirling strength (λ2

c i = 5 u2
∞/δ2

0). Contour levels from −0.2 to 0.2; light shades indicate u′′ > 0,
grey shades indicate u′′< 0.

and coherent vortices has already been observed by several authors (Jiménez & Pinelli
1999; Ringuette et al. 2008), and can be equally well explained in the light of the
theories for near-wall turbulence self-sustainment proposed by Hamilton et al. (1995)
and Chernyshenko & Baig (2005).

In figure 3, we report a three-dimensional view of the vortex cores detected with
the iso-surface of the swirling strength corresponding to λ2

c i = 5 u2
∞/δ2

0 . In the figure,
near-wall structures are rendered in light shades, whereas structures located away
from the wall are depicted in dark shades. Figure 3 shows that the innermost layer
is populated by quasi-streamwise vortices inclined at a small angle with respect to
the (x, z)-plane; far from the wall, most of the observed structures have a cane-like
shape, as also observed by Robinson (1991b). Visual analysis of many flow samples
shows the occurrence of: (i) hairpin-shaped vortices, occasionally arranged in packets
(see figure 3a), as observed by Adrian et al. (2000) and Ringuette et al. (2008);
(ii) vortex arches (see figure 3b); and (iii) few inverted arches (figure 3c). As also found
by previous investigators, hairpin vortices with a well-defined distinction between
counter-rotating legs and a spanwise head are rather rare.

4.1. Mean and statistical flow properties

The statistical properties of the boundary layer have been obtained by assuming
homogeneity in the spanwise direction, and taking time-averages of the computed
solution once the flow is statistically steady. For this purpose, 100 flow samples
(equally spaced in time) have been collected over approximately 10 non-dimensional
time units (δ0/u∞), which is found to be long enough to obtain accurate estimates of
up to second-order statistics. In the analysis that follows, the instantaneous flow-field
variables are decomposed using either a Reynolds decomposition f = f + f ′, or a
density-weighted (Favre) decomposition f = f̃ + f ′′, where f̃ = ρf /ρ.

For the purpose of validating the present simulation we compare the computed
mean velocity, Reynolds stress and root-mean-square (r.m.s.) vorticity components
with the DNS of incompressible channel flow (at Reτ =550) of del Álamo & Jiménez
(2003). The distribution of the Van Driest-transformed mean streamwise velocity
is shown in a semi-logarithmic plot in figure 4. In the figure we also report the
expected linear scaling in the viscous sublayer (strictly valid if the density is constant,
as approximately verified in the near-wall region of adiabatic plates, see § 7.2 of
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Smits & Dussauge 2006)

u+
vd = y+, (4.1)

and the logarithmic scaling in the overlap region

u+
vd = C +

1

k
log y+, (4.2)

where the von Kármán constant is set to k = 0.41, and the log law constant is
set to C = 5.2, as found in previous supersonic DNS (Pirozzoli et al. 2004) and in
experiments (Eléna & Lacharme 1988 report C =5.17). The results are in excellent
agreement with the incompressible DNS data, except for some differences in the
outermost region, where the selected Reτ is different from del Álamo & Jiménez
(2003). The figure also shows that the viscous sublayer law holds up to y+ ≈ 7,
and the log region extends approximately from y+ =40 to y+ = 140. Consistent with
experimental and theoretically predicted results at very low Reynolds number (Smits &
Dussauge 2006), we observe a relatively small wake (the estimated wake law constant
Π ≈ 0.175). In the following discussion we will often refer to the region below y+ = 40
(that includes the viscous sublayer and the buffer layer) as the ‘inner layer’, and
similarly we will refer to the region above y+ =40 (that includes the logarithmic
layer and the wake region) as the ‘outer layer’. The distributions of the density-scaled
Reynolds-stress components are reported in figure 5. In agreement with Morkovin’s
hypothesis (Morkovin 1961), the scaled DNS data agree well with the incompressible
channel-flow data of del Álamo & Jiménez (2003), the main difference being a larger
amplitude of the peak streamwise turbulence intensity, consistent with the findings of
Gatski & Erlebacher (2002) and Pirozzoli et al. (2004). To further assess the global
behaviour of the external layer, figure 5(b) compares the distributions of the Reynolds
stresses to the supersonic boundary-layer measurements of Eléna & Lacharme (1988),
and confirms the quality of the present simulation.

Figure 6 shows the distribution of the computed r.m.s. vorticity components in wall
units. In agreement with the findings of Klewicki (1997), the spanwise vorticity fluctu-
ations (ω′

z) are significantly larger than either the streamwise (ω′
x) or the wall-normal
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(ω′
y) fluctuations for y+ < 25; for y+ > 30, the vorticity fluctuations become nearly

isotropic (being ω′
x ≈ ω′

y ≈ ω′
z). Consistent with the data of del Álamo & Jiménez

(2003), ω′
x attains a peak at y+ ≈ 16, and ω′

y is maximum at y+ ≈ 12.

4.2. Vortex orientation statistics

The issues related to the orientation of vortical structures in wall turbulence have been
widely studied in the literature. An often quoted result is that vortical structures are
mainly inclined at 45◦ with respect to the wall. Theodorsen (1952) first postulated the
existence of horseshoe-shaped vortices inclined along the principal extensive strain
direction (making an angle of 45◦ with respect to the wall), and his conclusions
were confirmed by the flow visualization of individual hairpin vortices of Head &
Bandyopadhyay (1981). Ong & Wallace (1998) arrived at similar conclusions from the
analysis of the joint p.d.f. of the vorticity components in the longitudinal wall-normal
(x, y)-plane. Ganapathisubramani et al. (2006) focused their attention on the necks
of hairpin structures, and found that their most probable elevation angle is again
approximately 45◦.

In the present work we define the local orientation of vortical structures in terms
of two angles: the elevation angle (θe), i.e. the angle formed with the wall plane, and
the projection angle (θzx) in the wall plane. By convention, the projection angle is
measured with respect to the positive z-direction, and counted moving in the positive
x-direction (see figure 16). For example, the projection angle associated with the mean
vorticity vector (which points in the negative z-direction) is θzx = ±180◦.

The statistical orientation of the educed coherent structures is completely
characterized by introducing the joint p.d.f. (P ) of the elevation and projection angles.
We point out that, in the case of an isotropic random vector field, we would have
P (θzx , θe) ∼ cos θe. Hence, to avoid biasing towards small values of θe, we introduce a
scaled p.d.f., defined as

P̃ (θzx, θe) =
P (θzx, θe)/ cos θe∫ π/2

−π/2

∫ π

−π

P (θzx, θe)/ cos θe dθzxdθe

, (4.3)

which yields P̃ (θzx, θe) ≡ 1/2π2 for an isotropic vector field.
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Figure 7 reports the distribution of P̃ (θzx , θe) separately for both the inner and the
outer layer. The figure indicates overall agreement of all orientation criteria in the
outer layer, whereas strong sensitivity to the eduction criterion are found in the inner
layer. The discrepancies are most probably due to the observed biasing of the various
vortex orientation criteria in the presence of intense strain.

In the commonly accepted scenario, the near-wall boundary layer is populated
by quasi-streamwise vortices with small inclination with respect to the wall plane.
Figure 7 shows that the only criterion which is consistent with such a scenario is
the one based on the local strain direction (vr -criterion), which indeed suggests the
presence of quasi-streamwise vortex cores inclined at θe ≈ ± 10◦.

In the outer layer, the p.d.f. maps show a preference for vortex directions in the
first and third quadrant, thus indicating the prevalence of forward-leaning structures,
with (weak) local maxima in the range 40◦ � |θzx | � 90◦ and 25◦ � |θe| � 60◦, depending
upon the chosen eduction criterion. No distinct peaks associated with quasi-streamwise
vortices (θzx ≈ ± 90◦, θe ≈ 0◦), clockwise (θzx ≈ ± 180◦, θe ≈ 0◦) and counterclockwise
heads (θzx ≈ 0◦, θe ≈ 0◦) are observed.
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In figure 8 we report the distribution of the conditional expected value of the
elevation angle as a function of the wall projection angle, defined as

θe(θzx) =

∫ π/2

−π/2

θe P̃ (θzx, θe) dθe. (4.4)

The figure shows a nearly sinusoidal dependence of θe upon θzx in the outer layer,
with peak values of |θe| =15◦–23◦, depending upon the selected vortex orientation
criterion. We point out that a closed-loop structure, such as that sketched in figure 9,
would yield a similar dependence. Specifically, if we assume for the loop a planar
elliptical shape with an inclination α with respect to the forward direction, it is easy
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to verify that the following relationship between θzx and θe holds

θe =
sinα√

1 + cos2 α cot2 θzx

, (4.5)

regardless of the aspect ratio of the loop. Equation (4.5) implies a quasi-sinusoidal
dependence of θe upon θzx , with a variation from −α to +α. This suggests that
ring-like vortices leaning in the streamwise direction at an angle α =15◦–23◦ with
respect to the positive streamwise direction can be regarded as the statistically
representative outer-layer structures. Similar values of the inclination angle are also
found from the analysis of the two-point streamwise momentum flux correlations (not
reported), that yield an average orientation of the outer-layer structures of ∼18◦ (for
0.2 � y/δ � 0.7). This finding is consistent with the conditional eddy inclination angle
reported by Hutchins et al. (2005) for low-speed boundary layers, but it differs from
the values reported by Spina & Smits (1987) and Robinson (1989) for the average
‘structure angles’ in supersonic boundary layers.

It is important to observe that the inclination angle considered here represents
in some sense a statistical average of the inclination of all vortical structures,
including both quasi-streamwise vortices (which lie in wall-parallel planes) and
hairpin vortices (which lie in planes inclined at 45◦ with respect to the wall). In
this respect, we again recall that the DNS results (see figure 7) indicate that vortical
structures are continuously distributed across a broad range of orientations. Therefore,
discriminating between quasi-longitudinal vortices and hairpins is somewhat artificial.
We will return to the issues related to the topology and inclination of the ‘typical’
structures in § 4.5.

To further characterize the statistical orientation of vortical structures, in figure 10
we report the univariate p.d.f. of the projection angles (in the three coordinate planes)
and of the elevation angle. Figure 10 shows a statistical preference for |θzx | ≈ 40◦ in
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the buffer zone and |θzx | ≈ 60◦ in the log layer, thus suggesting the prevalence of
vortex cores tilted outwards (denoted by OTC in figure 9). Furthermore, the slight
preference for |θzx | ≈ 180◦ with respect to θzx ≈ 0◦ suggests that heads (H, see figure 9)
are statistically more frequent than tails (T, see figure 9). The distribution of P (θxy )
indicates a tendency for vortex cores to lean in the streamwise direction, with a peak
projection angle of θxy ≈ 33◦ in the buffer region and θxy ≈ 40◦ in the outer layer, in

agreement with the measurements of Ong & Wallace (1998). The distribution of P̃ (θe)
exhibits a peak at ±18◦ in the buffer region, whereas in the outer layer it shows a
rather flat distribution in the range |θe| � 45◦.

In order to compare our data with the experiment of Ganapathisubramani et al.
(2006), we have also performed a statistical analysis restricted to the regions where
the velocity gradient in planes parallel to the wall has a pair of complex conjugate
eigenvalues, thus considering only the necks of hairpin vortices, and neglecting both
spanwise and quasi-streamwise cores. The results reported in figure 11 exhibit the
same trend as the experimental data, the main differences being the underestimation
of the peak values of the p.d.f.’s, and are consistent with the flow visualizations of
Head & Bandyopadhyay (1981), confirming that the most probable elevation angle
of hairpin vortices is θe ≈ 45◦. The discrepancies with the experimental data are most
probably due to a difference in the Reynolds number (Reτ = 1160 in the experiment),
as well as to subtle differences in the eduction procedure.

As seen in the last two figures, the generally quoted angle of 45◦ is arrived at
following different approaches, e.g. considering the statistics of the vorticity projection
in the (x, y)-plane, or retaining (more or less arbitrarily) only the ‘necks’ of hairpins.
However, it is our opinion that a convenient definition of the typical vortex inclination
angle necessarily involves the analysis the statistical relation between the elevation
and projection angles. Following this approach leads to a much smaller value of the
expected inclination angle.
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4.3. Vortex curvature statistics

The geometrical features of vortical structures have been further characterized by
considering the statistics of the curvature of vortex lines, defined as curves everywhere
tangent to the local vorticity vector ω. The local radius of curvature of a vortex line
can be defined as (Farin 1992)

R =
ω3

|ω × (∇ω · ω)| . (4.6)

The distribution of the expected value of R (see figure 12) shows a consistent increase
with the wall distance in the outer layer, with the mean radius varying between 60
and 100 wall units. Introducing the local dissipative length scale, defined as (Smits &
Dussauge 2006)

η =
1√
ρ

(
μ3

σ ′
ij u′

i,j

)1/4

,

the expected radius of curvature of the outer layer vortical structures scales as
27 <R/η < 35, for 50 � y+ � 200.

4.4. Vortex cores statistics

In order to determine the characteristic size and circulation of the educed vortex
structures we have analysed the flow field in the cross-stream (y, z)- and longitudinal
wall-normal (x, y)-planes (also referred to as sampling planes). Candidate core centres
in the sampling planes are then defined as points where: (i) the swirling strength attains
a local maximum and is larger than a suitable threshold (ε); and (ii) the vorticity
vector is nearly normal to the sampling plane. In addition, only those cores which
induce a consistent swirling motion (either clockwise or counterclockwise) about their
centre are retained for the statistical analysis (Carlier & Stanislas 2005).

Threshold independence and convergence of statistics is achieved assuming
ε = 0.42 u∞/δ0, and retaining vortices whose axes make an angle with the normal
to the sampling plane of less than 20◦. The relative velocity field about the core
centres is scanned in the sampling plane in the east, west, south and north directions,
and four core radii (rE, rW , rS, rN ) are identified where the tangential velocity attains
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Figure 13. Average eddy structures in viscous + buffer layer : (a) (x, y)-plane, clockwise
cores; (b) (x, y)-plane, counterclockwise cores; (c) (y, z)-plane, clockwise cores; (d) (y, z)-plane,
counterclockwise cores. Vectors represent the induced velocity field, contours indicate average
vorticity (contour levels from −0.17 u∞/δ0 to 0.17 u∞/δ0).

its maximum values (vE, vW , vS, vN ). The vortex core area is then estimated as
S = π(rE + rW )(rS + rN )/4, and the core circulation, effective radius and effective
induced velocity are determined according to

Γ0 =
π

4
(rEvE + rWvW + rSvS + rNvN ), r0 =

√
S

π
, v0 =

Γ0

2πr0

.

The total vortex circulation (Γ∞) is estimated from the core circulation, assuming
that the velocity distribution is similar to the Lamb–Oseen vortex, which implies
Γ∞ = Γ0/(1 − 1/e).

Figures 13 and 14 show the average velocity vector plots (associated with both
streamwise and cross-stream cores), respectively, in the inner and in the outer part
of the boundary layer; in the figures we also report the contours of the computed
out-of-plane vorticity component. Regardless of their nature (streamwise, spanwise,
clockwise or counter-clockwise) all vortices exhibit the same qualitative flow pattern,
with a spiralling motion about the vortex centre owing to the effect of vortex stretching
in the direction normal to the plane under consideration. In the inner layer, vortex
cores are nearly elliptical owing to the presence of intense shear, and they tend to
become more circular in the outer layer.
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The computed distributions of the number density of vortex cores (that represents
the number of detected vortex cores per unit surface in the sampling plane), their
characteristic radius, their induced velocity, their total circulation, and their x− and
y−convection velocity components are reported in figure 15. The distributions of the
number density of the quasi-streamwise and quasi-spanwise vortices (figure 15a) show
a prevalence of streamwise vortex cores (of both signs) throughout the boundary layer,
attaining a peak at y+ ≈ 25 and decaying approximately as 1/(y+)3/4 for y+ > 50. For
the quasi-streamwise structures, the population of clockwise and counterclockwise
cores is very nearly the same, owing to homogeneity in the spanwise direction.
Spanwise cores are found to be less numerous than streamwise cores and to be more
frequently clockwise (i.e. of the same sign as the mean shear) than counterclockwise,
and their number decreases as 1/(y+)1/2. In the outer layer, the number densities of
the clockwise and counterclockwise spanwise cores and of the streamwise cores (of
both signs) are approximately in the ratio 3 : 2 : 4. The computed number densities
have very similar magnitude to those reported by Carlier & Stanislas (2005) for
low-speed boundary layers. However, those authors found a relatively larger number
of spanwise vortices (compared to quasi-streamwise vortices), and reported number
densities in the ratio 4 : 2 : 2.
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The distributions of the expected vortex radii of both spanwise and streamwise
vortex cores (figure 15b) show a rapid increase up to y+ ≈ 50. In the outer layer, cores
of all types have comparable sizes (r+

0 ≈ 12–15). The latter values are consistent with
the data reported by Blackwelder & Eckelmann (1979) for streamwise cores, but are
somewhat smaller than those reported by Carlier & Stanislas (2005), who found core
radii varying between r+

0 = 20 (at Reθ =7500) and r+
0 = 25 (at Reθ = 19 000). When

normalized by the local dissipative length scale, the core radii vary between 5 η and
6 η, in close agreement with the findings of Del Álamo et al. (2006).

The vortex-induced velocity (figure 15c) exhibits a slow decay with the wall distance,
and attains values of O(uτ ) in the outer region, thus confirming that the commonly
assumed turbulent velocity scale (uτ ) is closely associated with the velocity induced
by the vortical structures. The mean circulation (figure 15d) increases rapidly with
the wall distance up to y+ ≈ 20, attaining a plateau value of Γ +

∞ ≈ 180 in the outer
region. This behaviour is consistent with the results of Carlier & Stanislas (2005)
(however, those authors report an asymptotic value Γ +

∞ ≈ 250), and with the DNS
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analysis of Robinson (1991b) (who reported Γ +
∞ ≈ 130 for quasi-streamwise cores and

Γ +
∞ ≈ 190 for spanwise cores). The analysis thus indicates that in the outer layer the

majority of the educed structures have properties that do not depend upon the wall
distance, and in this sense they can be classified as detached eddies.

The distributions of the mean streamwise and wall-normal core translation velocity
components (reported in figures 15e and 15f ), show that the detected structures
propagate in the negative x- and positive y-direction (with respect to the mean flow)
at an average speed of the order of the friction velocity. This result is in agreement
with the experimental findings of Delo, Kelso & Smits (2004), and with the analysis
of Del Álamo et al. (2006), who showed that detached vortices are preferentially
associated with low-u wakes left behind by larger attached vortex clusters. This is
also consistent with the qualitative observation (see figure 2 and related discussion)
that vortices are preferentially found in conjunction with low-speed streaks, as inferred
from the analysis of many flow fields. However, the same effect was not observed in
the experiments of Adrian et al. (2000) and Carlier & Stanislas (2005), who reported
nearly zero convection velocities of vortical structures with respect to the mean flow.

The analysis of the vortex properties for cores whose axes are not normal to the
sampling planes (the figures are omitted for brevity) further confirms the insensitivity
of the conditional expected radius and circulation to the local orientation.

4.5. Statistical interpretation of educed structures

The results reported in § 4.2 have provided reasonable evidence that, in a statistical
sense, properties of coherent vortical structures of wall turbulence, such as the spatial
orientation, can be interpreted in terms of an ensemble of identical non-interacting
closed-loop vortex filaments inclined at a positive angle with respect to the wall.

In order to characterize the topology of such ‘typical’ outer-layer structures, we
assume that (to a first approximation) they can be described as (zero-thickness) vortex
filaments, whose equation is

dx
ds

= τ , (4.7)

where s is the arclength along the filament and τ is the local tangent unit vector. In
order to integrate (4.7), we assume that: (i) the differential arc element is proportional
to the probability of the associated projection angle θzx (ds ∼ P (θzx ) dθzx ); and (ii) the
elevation and projection angles are related according to θe = θe(θzx).

Referring to figure 16, we express τ in terms of the local elevation and projection
angles, i.e.

τ = (cos θe sin θzx, sin θe, cos θe cos θzx),

thus obtaining

dx

dθzx

= cos θe(θzx) sin θzx P (θzx),

dy

dθzx

= sin θe(θzx) P (θzx),

dz

dθzx

= cos θe(θzx) cos θzx P (θzx).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.8)

Then, using the conditional expected elevation angle and the p.d.f. determined from
the DNS data (reported in figure 8), (4.8) is numerically integrated with respect to θzx

from −π to π. As anticipated in § 4.2, the resulting curve exhibits a closed-loop shape
(an indication of the occurrence of both positive and negative vorticity events), with
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Figure 16. Sketch of model vortex filament.
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Figure 17. Model of statistically educed vortical structure in outer-layer. Black dots indicate
points of vortex filament computed according to (4.8) using the ω-criterion. Lengths are
reported for indicative purposes in terms of the local dissipative length scale η. (a)
Three-dimensional view; (b) (x, z)-projection; (c) (x, y)-projection; (d) (y, z)-projection.

a nearly planar head inclined at 20◦ with respect to the wall (see figure 17). The aft
part of the filament is more inclined with respect to the wall (see figure 17c), and the
radius of curvature at the tail appears to be less than the corresponding value at the
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head. The latter observation is consistent (see figure 15(a) and associated discussion)
with the observed disparity in the number density of spanwise cores with positive
and negative spanwise vorticity. With regard to the length scales of the statistically
representative outer-layer structures, from figures 12 and 15(b) we infer that they
have a characteristic overall size (assuming it is of the order of the local radius of
curvature of the vortex lines) of 27–35 η and a core radius of 5–6η, consistent with
the findings of Del Álamo et al. (2006) for the features of detached vortex clusters in
incompressible channel flow.

The model here developed provides a theoretical basis for the statistical
interpretation of the outer-layer structures, and it supports the conclusions of the
various investigators who have associated the occurrence of positive vorticity events
with the presence of closed-loop vortex structures. Klewicki & Falco (1990) pointed
out that in the very near-wall layer (y+ < 10) the instantaneous spanwise vorticity
(ωz) is always negative. Further away from the wall, they found a relatively high
probability (40 % at y+ = 40) of positive spanwise vorticity events, an indication
that locally closed vortex loops are possible. Klewicki (1997) further suggested that
the near-wall layer can be regarded as a sheet-like vorticity distribution which acts
as a source for the generation of compact vortical structures. The analysis of two-
point vorticity correlations also led the author to the conclusion that positive and
negative vorticity regions often come in pairs, thus supporting the existence of ring-like
structures (the ‘typical-eddies’ proposed by Falco 1977). The presence of head vortices
with circulation opposite to the mean shear was also recognized by Kline & Portela
(1997); however, no physical explanation was given by those authors to justify the
occurrence of counterclockwise cores. Hambleton, Hutchins & Marušić (2006) have
observed both negative and positive spanwise vorticity events in the outer layer, and
argued that they are due either to omega-shaped vortex loops, or possibly to vortex
rings.

With regard to the issue of how closed-loop structures form, we argue that the inner-
layer positive-vorticity events may trigger an inflectional instability mechanism, as also
proposed by Acarlar & Smith (1986) and Klewicki (1997). Inner-layer structures are
subsequently shed away from the wall, maintaining their properties (in terms of size,
strength and orientation) while undergoing a slow decay process owing to molecular
diffusion. Such a mechanism also explains the observed insensitivity of all vortex
properties to wall distance and local core orientation.

5. Conclusions
In the present study, a canonical supersonic boundary layer at M =2, Reθ =950

has been analysed by means of a spatial direct numerical simulation, with the
objective of quantitatively characterizing the coherent vortical structures in terms
of their size and orientation. The study, while being limited to a single Mach and
Reynolds number, supports the well-established similarities between compressible
(for M less than about 5) and incompressible turbulent boundary layers for the mean
and statistical properties, embodied by Morkovin’s hypothesis. In addition, it also
supports similarities in the observed features of coherent vortical structures (length
scales, orientation and strength). In particular, the analysis shows that the viscous
sublayer and the buffer layer (collectively referred to as the inner layer) are mostly
populated by quasi-streamwise vortices with small inclination with respect to the wall,
and which attain a peak number density at y+ ≈ 25. The logarithmic layer and the
wake region (collectively referred to as the outer layer) are populated by a variety
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of structures: elongated quasi-streamwise vortices, arches, a few inverted arches, and
hairpin vortices (either isolated or arranged in packets).

In the outer region (y+ > 40), the number density of the educed structures decays
algebraically with the distance from the wall, and the number density of clockwise
and counterclockwise spanwise cores and streamwise cores (of either sign) are
approximately in the ratio 3 : 2 : 4. The size of the educed structures grows with
the distance from the wall in the inner layer (y+ < 40), and it levels off in the
outer layer where it attains values ranging from 5 to 6 local dissipative length scales.
The circulation of the vortices does not show significant variations with the distance
from the wall in the outer region, attaining a value of Γ + ≈ 180, regardless of the
local vortex orientation. The educed structures move (with respect to the mean flow)
in the negative x- and positive y-directions at a speed of the order of the friction
velocity, and induce velocity perturbations of the same order of magnitude; their
properties vary slowly with the distance from the wall and, according to Townsend’s
classification, they are detached from the wall.

Assuming that the outer-layer turbulence consists of an ensemble of geometrically
identical non-interacting vortices, the simulation shows that the statistically
representative outer-layer structures are ring-like vortices inclined at approximately
20◦ with respect to the wall plane. Such a value has been determined upon inspection
of the statistical relation between the elevation angle and the projection angle in the
wall plane, and it represents a statistical average inclination of all vortical structures,
including quasi-streamwise vortices and hairpins. The overall size of the typical
structures is found to be approximately 27–35 dissipative length scales, consistent
with the scaling obtained by Del Álamo et al. (2006) for detached vortex clusters in
incompressible channel flow. The finding that ring-like vortices are the statistically
representative outer-layer structures is consistent with the presence of open-loop
vortices (both quasi-streamwise vortices and hairpins) in the instantaneous fields, and
may provide a physical interpretation for the occurrence of both positive and negative
spanwise vorticity events.

We acknowledge the CASPUR computing consortium of the University of Rome
‘La Sapienza’ for providing the computational resources to perform the direct
numerical simulation; we specially thank Michela Botti for her support in the
parallelization and optimization of the code.
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